1. Uvod
In the realm of new energy vehicles, sustavi energetskih baterija kamen su temeljac njihovog rada. Kao potražnja za električna vozila continues to grow, osiguravanje pouzdanosti i performansi ovih baterijskih sustava u različitim uvjetima okoline postaje od iznimne važnosti. Među različitim čimbenicima okoliša, temperature variations have a significant impact on the performance and lifespan of power battery systems. This is why temperature cycle testing has emerged as a crucial assessment method in the development and quality control of power battery systems.
2. Ciljevi i metode ispitivanja
2.1 Ciljevi testa
The primary objective of temperature cycle testing is to accurately simulate the working conditions of the battery system in an environment with temperature fluctuations. By subjecting the battery system to a series of temperature cycles, we can comprehensively evaluate its performance and reliability during these temperature – changing processes. This evaluation is essential as electric vehicles are expected to operate in diverse climates, from extremely cold regions to sweltering hot areas. Understanding how the battery system responds to temperature changes helps manufacturers anticipate potential issues that may arise during real – svjetska uporaba. Ovaj, zauzvrat, enables them to improve the design, enhance the durability, and ensure the safety of the battery systems, što u konačnici dovodi do pouzdanijeg i dugotrajnijeg – lasting električna vozila.
2.2 Metode ispitivanja
Proces testiranja uključuje postavljanje baterijskog sustava unutar posebne klime – kontrolirana komora. This chamber is capable of precisely regulating the temperature to create different temperature extreme conditions. Na primjer, the temperature can be rapidly changed from a low – temperature extreme, kao npr – 40°C, to a high – temperature extreme, like 85°C, and then cycled back and forth. The rate of temperature change can also be adjusted according to specific test requirements.
Tijekom testa, kontinuirano se prati i bilježi mnoštvo parametara vezanih uz baterijski sustav. Temperature sensors are placed at key positions within the battery system to accurately measure the internal temperature distribution. The voltage across the battery cells is monitored in real – time to detect any abnormal changes that could indicate a degradation in performance. Također se prati struja koja teče ui iz baterije, budući da pruža uvid u učinkovitost punjenja i pražnjenja baterije. Dodatno, kapacitet baterije se povremeno mjeri. To se često radi provođenjem serije naboja – ciklusi pražnjenja prije, tijekom, and after the temperature cycle exposure. Usporedbom vrijednosti kapaciteta, the extent of capacity degradation due to temperature cycling can be accurately determined.
3. Impact of Temperature Cycling on Battery Systems
3.1 Physical Changes
Frequent temperature changes can cause the components inside the battery system to expand and contract. Različiti materijali korišteni u bateriji, kao što su elektrode, separatori, i odvodnici struje, imaju različite koeficijente toplinskog rastezanja. Ova neusklađenost u širenju može dovesti do mehaničkog stresa i naprezanja unutar baterije. S vremenom, to može uzrokovati odvajanje elektroda od kolektora struje, which is a serious issue as it can disrupt the electrical connection and reduce the battery’s performance. The repeated expansion and contraction can also cause the separator to warp or develop small cracks. Since the separator is designed to prevent direct contact between the anode and cathode, any damage to it can increase the risk of internal short – krugovi, which can lead to a sudden loss of power or even a fire in extreme cases.
3.2 Chemical Changes
Temperature cycling can also accelerate the side reactions occurring within the battery. Na primjer, u litiju – ionske baterije, the solid – međufaza elektrolita (BITI) layer on the anode surface is affected. At high temperatures, the SEI layer can grow more rapidly, and during low – temperature cycles, its structure may become more brittle. This can increase the internal resistance of the battery, što rezultira smanjenjem njegovog ukupnog kapaciteta. Štoviše, the chemical reactions related to the electrolyte can also be affected. The electrolyte may decompose or react with other components in the battery under temperature – cycling conditions, further deteriorating the battery’s performance.
4. Evaluation Indicators in Temperature Cycle Testing
4.1 Performance Degradation
Performance degradation is one of the most critical aspects to evaluate in temperature cycle testing. By measuring parameters such as capacity loss and internal resistance change during the temperature cycle, we can accurately assess how the battery system’s performance is affected. Capacity loss is a direct indication of the battery’s ability to store and deliver energy. A significant decrease in capacity over a certain number of temperature cycles means that the battery’s energy – storage capabilities are being compromised. Internal resistance change is also crucial. Povećanje unutarnjeg otpora implicira da baterija ima više poteškoća u isporuci i prihvaćanju električne struje. To može dovesti do smanjene izlazne snage tijekom pražnjenja i sporijeg vremena punjenja, both of which are undesirable in električno vozilo applications.
4.2 Cycle Life
The cycle life of the battery system in a temperature – cycling environment is another important evaluation indicator. It refers to the number of temperature cycles the battery can withstand before its performance starts to degrade significantly. A longer cycle life indicates a more durable battery system. Determining the cycle life helps manufacturers estimate the lifespan of the battery in real – world applications where temperature variations are common. This information is valuable for both the design of the battery system and for providing consumers with an estimate of the battery’s service life.
4.3 Temperature Response Speed
The temperature response speed of the battery system is an indicator of its ability to adapt to rapid temperature changes. A fast – responding battery system can adjust its internal temperature and electrochemical reactions more quickly, which is beneficial for maintaining stable performance. Monitoring the time it takes for the battery system to reach a new temperature equilibrium when the external temperature changes can help evaluate its temperature – control capabilities. A slow – responding battery system may experience overheating or under – heating issues during rapid temperature changes, which can lead to performance degradation and safety risks.
4.4 Sigurnosna izvedba
Sigurnost je od najveće važnosti u baterijskim sustavima. During temperature cycle testing, the safety performance of the battery system is closely monitored. To uključuje procjenu sposobnosti baterije da spriječi toplinski bijeg, što je opasna situacija u kojoj temperatura baterije brzo raste, što dovodi do potencijalnog požara ili eksplozije. Baterijski sustav treba biti opremljen sigurnosnim mehanizmima, kao što su toplinski osigurači i više – temperaturni zaštitni krugovi, kako bi se spriječio toplinski bijeg. Dodatno, test također ispituje zaštitu baterije od prekomjernog – iscjedak i gotovo – uvjete punjenja, which can be more likely to occur under temperature – cycling conditions. Nad – pražnjenje može uzrokovati nepovratno oštećenje ćelija baterije, dok gotovo – punjenje može dovesti do stvaranja plina i povećanog unutarnjeg tlaka.
5. Provedba testa i analiza rezultata
5.1 Provedba testa
The implementation of temperature cycle testing requires strict control over the test environment. Klima – controlled chamber must be calibrated regularly to ensure accurate temperature settings. Sustav baterija ugrađen je u komoru na način da simulira njegov stvarni radni položaj u vozilu. Svi potrebni senzori za praćenje različitih parametara pravilno su povezani i kalibrirani prije početka testa.
The temperature change pattern during the test can follow different rules. A linear temperature change involves gradually increasing or decreasing the temperature at a constant rate. Na primjer, the temperature may be increased from – 20°C to 60°C over a period of 2 sati. A periodic temperature change, s druge strane, involves cycling the temperature between two set points at a fixed interval. Na primjer, the temperature may be cycled between 0°C and 50°C every 4 sati. The number of cycles and the duration of each cycle are determined based on the specific test requirements and the standards to be met.
5.2 Analiza rezultata
Nakon što je ispitivanje završeno, prikupljeni podaci se detaljno analiziraju. The analysis of performance degradation data can help identify the factors contributing to capacity loss and internal resistance increase. Na primjer, if the capacity loss is found to be more significant at high – temperature cycles, it may indicate that the electrode materials are more sensitive to high – temperature conditions, and further research can be done to improve the material’s stability at high temperatures.
The analysis of cycle – life data can provide insights into the long – term durability of the battery system. By comparing the cycle – life results of different battery designs or materials, manufacturers can select the most suitable options for improving the battery’s lifespan.
The analysis of temperature – response – speed data can help optimize the battery’s thermal management system. If the battery system is found to have a slow temperature response, measures can be taken to improve the heat – transfer efficiency, such as adding more efficient heat – dissipating fins or improving the coolant circulation in a liquid – hlađeni sustav.
The analysis of safety – performance data is crucial for ensuring the reliability of the battery system. Ako se otkriju bilo kakvi sigurnosni problemi, kao što je potencijalni rizik od toplinskog bježanja ili prekomjernog – iscjedak, sigurnosni mehanizmi baterije mogu se poboljšati. To može uključivati dodavanje naprednijih – senzora temperature ili poboljšanja dizajna nad – zaštitni krug punjenja.
6. Zaključak
Temperature cycle testing plays a vital role in the development and quality assurance of power battery systems for new energy vehicles. By subjecting the battery systems to realistic temperature – changing conditions, proizvođači mogu prepoznati potencijalne slabosti i napraviti poboljšanja kako bi poboljšali svoje performanse, pouzdanost, i sigurnost. The comprehensive evaluation of performance degradation, cycle life, temperature response speed, i sigurnosne performanse pružaju vrijedne uvide za dizajn i optimizaciju baterijskih sustava.
Budući da se tržište električnih vozila nastavlja širiti, očekuje se da će električna vozila raditi u sve raznolikijim i izazovnijim okruženjima, the importance of temperature cycle testing will only increase. Služi kao ključan alat za osiguravanje da sustavi energetskih baterija mogu zadovoljiti stroge zahtjeve stvarnog – svjetska uporaba, pridonoseći širokom usvajanju i dugom – uspjeh novih energetskih električnih vozila.


